农田固碳措施对温室气体排放的影响
近年来,农田土壤固碳的研究已经成为全球变化研究的一大热点。大量研究表明,SOC储量受诸多因素的影响,如采用保护性/免耕措施、推广秸秆还田、平衡施用氮肥、采用轮作制度和土地利用方式等,上述管理措施的差异导致农田土壤有机碳库的显着差别,并影响农田温室气体排放水平。
1、保护性耕作/免耕措施
保护性耕作作为改善生态环境尤其是防治土壤风蚀的新型耕作方式,在多个国家已经有广泛的研究和应用。中国开展的保护性耕作研究证明了其在北方地区的适用性,并且已进行了保护性耕作对温室效应影响的相关研究。统计表明2004年全球范围内免耕耕作的面积约为95Mha,占全球耕地面积的7%,并且这一面积有逐年增加的趋势。
常规耕作措施会对土壤物理性状产生干扰,破坏团聚体对有机质的物理保护,影响土壤温度、透气性,增加土壤有效表面积并使土壤不断处于干湿、冻融交替状态,使得土壤团聚体更易被破坏,加速团聚体有机物的分解。免耕/保护性耕作可以避免以上干扰,减少SOC的分解损失。而频繁的耕作特别是采用犁耕会导致SOC的大量损失,CO2释放量增加,而免耕则能有效的控制SOC的损失,增加SOC的储量,降低CO2的释放量。West和Post研究发现从传统耕作转变为免耕可以固定0.57±0.14MgCha-1yr-1。但对于保护性耕作/免耕是否有利于减少温室气体效应尚不明确,这是由于一方面免耕对减少CO2排放是有利的,表现为免耕可以减少燃油消耗所引起的直接排放;另一方面,秸秆还田以后秸秆碳不会全部固定在土壤中,有一部分碳以气体的形式从农田释放入大气。
免耕会导致表层土壤容重的增加,产生厌氧环境,减少SOC氧化分解的同时增加N2O排放;采用免耕后更高的土壤水分含量和土壤孔隙含水量(Waterfilledporespace,WFPS)能够刺激反硝化作用,增加N2O排放;同时免耕导致的N在表层土壤的累积也可能是造成N2O排放增加的原因之一,在欧洲推广免耕措施以后,土壤固碳环境效益将被增排的N2O抵消50%以上。但也有新西兰的研究表明,常规耕作与免耕在N2O排放上无显着性差异,还有研究认为凿式犁耕作的农田N2O排放比免耕高,原因可能是免耕时间太短,对土壤物理、生物性状还未产生影响。耕作会破坏土壤原有结构,减少土壤对CH4的氧化程度。也有研究表明,翻耕初期会增加土壤对CH4的排放,但经过一段时间(6-8h)后,CH4排放通量有所降低。
总之,在增加土壤碳固定方面,保护性耕作和免耕的碳增汇潜力大于常规耕作;在净碳释放量方面,常规耕作更多起到CO2源的作用,而保护性耕作和免耕则起到CO2汇的作用;在碳
减排方面,免耕和保护性耕作的减排潜力均大于常规耕作;由于N2O和CH4的排放受多种因素的综合影响,因此耕作措施对这两种温室气体排放的影响还有待进一步研究。
2、秸秆管理措施
作物秸秆作为土壤有机质的底物,且作物秸秆返还量与SOC含量呈线性关系,因此作物秸秆是决定SOC含量的关键因子之一。秸秆还田有利于土壤
碳汇的增加,同时避免秸秆焚烧过程中产生温室气体。因此,秸秆还田是一项重要而又可行的农田碳汇管理措施。秸秆还田以后,一部分残留于土壤中成为土壤有机质的来源,另一部分将会以CO2气体的形式散逸到大气中,因此,随着秸秆还田量的增加CO2排放也会增加。有研究表明,秸秆经过多年分解后只有3%碳真正残留在土壤中,其他97%都在分解过程中转化为CO2散逸到大气中。秸秆还田会增加土壤有机质含量,而有机质是产生CH4的重要底物,因此秸秆还田会增加CH4的排放。综合考量,秸秆还田措施会引起CH4排放的增加,但直接减少了对CO2的排放,同时秸秆还田相对提高了土壤有机质含量,有利于土壤碳的增加,对作物增产具有积极作用。
秸秆还田措施对农业生态系统C、N循环的影响可表现为:一方面由于供N量的增加,可促进反硝化和N2O排放量的增加;另一方面表现为高C/N的秸秆进入农田后会进行N的生物固定,降低反硝化N损失;同时在秸秆分解过程中还可能产生化感物质,抑制反硝化。我国采用秸秆还田农田土壤固碳现状为2389Tga-1,而通过提高秸秆还田量土壤可达的固碳潜力为4223Tga-1,与国外研究结果相比较,Vleeshouwers等研究认为,如果欧洲所有农田均采用秸秆还田措施,欧洲农田土壤的总固碳能力可达34Tga-1。La1预测采用秸秆还田措施后全球农田土壤的总固碳能力可达200Tga-1。随着农业的发展及长期以来氮肥的过量投入,氮肥损失也是日益严重,可通过秸秆还田措施与氮肥的配合施用降低氮肥的反硝化作用及N2O的排放。但秸秆还田后秸秆与土壤的相互作用异常复杂,因此需要进一步开展秸秆施入土壤后与土壤的相互作用机理及田间实验研究。
3、氮肥管理措施
在农田生态系统中,土壤中的无机氮是提高作物生产力的重要因素,氮肥投入能够影响SOC含量,进而对农田碳循环和温室气体排放产生重要影响。长期施用有机肥能显着提高土壤活性有机碳的含量,有机肥配施无机肥可提高作物产量,而使用化学肥料能增加SOC的稳定性。农业中氮肥的投入为微生物生长提供了丰富的氮源,增强了微生物活性,从而影响温室气体的排放。但也有研究在长期增施氮肥条件下能够降低土壤微生物的活性,从而减少CO2的排放。有研究表明,CO2排放与土壤不同层次的SOC及全N含量呈正相关性,说明在环境因子相对稳定的情况下,土壤SOC和全N含量直接或间接地决定CO2排放通量的变化。对农业源温室气体源与汇的研究表明,减少氨肥、增施有机肥能够减少旱田CH4排放,而施用缓/控释氮肥和尿素复合肥能显着减少农田土壤NO2的排放。但也有研究表明,无机氮肥施用可减少土壤CH4的排放量,而有机肥施用对原有机质含量低的土壤而言可大幅增加CH4的排放量。长期定位施肥实验的结果表明,氮肥对土壤CH4氧化主要来源于铵态氮而不是硝态氮,因为氨对CH4氧化有竞争性抑制作用。此外,长期施用氮肥还改变了土壤微生物的区系及其活性,降低CH4的氧化速率,导致CH4净排放增加。全球2005年生产的100MtN中仅有17%被作物吸收,而剩余部分则损失到环境中。单位面积条件下,有机农田较常规农田有更少的N2O释放量,单位作物产量条件下,两种农田模式下N2O的释放量无显着性差异。尿素硝化抑制剂的使用可以起到增加小麦产量,与尿素处理相比对全球增温势的影响降低8.9-19.5%,同时还可能起到减少N2O排放的目的。合理的氮素管理措施有助于增加作物产量、作物生物量,同时配合秸秆还田等措施将会起到增加碳汇、减少CO2排放的作用。同时必须注意到施肥对农田碳汇的效应研究应建立在大量长期定位试验的基础上,对不同气候区采用不同的氮肥管理措施才能起到增加农田固碳目的。
4、水分管理措施
土壤水分状况是农田土壤温室气体排放或吸收的重要影响因素之一。目前全球18%的耕地属水浇地,通过扩大水浇地面积,采取高效灌溉方法等措施可增加作物产量和秸秆还田量,从而起到增加土壤固碳目的。水分传输过程中机械对燃料的消耗会带来CO2的释放,高的土壤含水量也会增加N2O的释放,从而抵消土壤固碳效益。湿润地区的农田灌溉可以促进土壤碳固定,通过改善土壤通气性可以起到抑制N2O排放的目的。土壤剖面的干湿交替过程已被证实可提高CO2释放的变幅,同时可增加土壤硝化作用和N2O的释放。采用地下滴灌等农田管理措施,可影响土壤水分运移、碳氮循环及土壤CO2和N2O的释放速率,且与沟灌方式相比不能显着增加温室气体的排放。
稻田土壤在耕作条件下是CH4释放的重要源头,但通过采取有效的稻田管理措施可以
减少水稻生长季的CH4释放。如在水稻生长季,通过实施一次或多次的排水烤田措施可有
效减少CH4释放,但这一措施所带来的环境效益可能会由于N2O释放的增加而部分抵消,
同时此措施也容易受到水分供应的限制,且CH4和N2O的全球增温势不同,烤田作为CH4
减排措施是否合理仍然有待于进一步的定量实验来验证。在非水稻生长季,通过水分管理尤
其是保持土壤干燥、避免淹田等措施可减少CH4释放。
许多研究表明,N2O与土壤水分之间有存在正相关关系,N2O的释放随土壤湿度的增加而增加,并且在超过土壤充水孔隙度(WFPS)限值后,WFPS值为60%-75%时N2O释放量达到最高。Bateman和Baggs研究表明,在WFPS为70%时N2O的释放主要通过反硝化作用进行,而在WFPS值为35%-60%时的硝化作用是产生N2O的重要途径。由此可见,WFPS对N2O的产生释放影响机理前人研究结果并不一致,因此有必要继续对这一过程深入研究。
5、农学措施
通过选择作物品种,实行作物轮作等农学措施可以起到增加粮食产量和SOC的作用。有机农业生产中常用地表覆盖,种植覆盖作物,豆科作物轮作等措施来增加SOC,但同时又会对CO2,N2O及CH4的释放产生影响,原因在于上述措施有助于增强微生物活性,进而影响温室气体产生与SOC形成/分解,从而增加了对温室气体排放影响的不确定性。种植豆科固氮植物可以减少外源N的投入,但其固定的N同样会起到增加N2O排放的作用。在两季作物之间通过种植生长期较短的绿被植物既可起到增加SOC,又可吸收上季作物未利用的氮,从而起到减少N2O排放的目的。
在新西兰通过8年的实验结果表明,有机农场较常规农场有更高的SOC,在荷兰通过70年的管理得到了相一致的结论。Lal通过对亚洲中部和非洲北部有机农场的研究表明,粪肥投入及豆科作物轮作等管理水平的提高,可以起到增加SOC的目的。种植越冬豆科覆盖作物可使相当数量的有机碳进入土壤,减少农田土壤CO2释放的比例,但是这部分环境效益会由于N2O的大量释放而部分抵消。氮含量丰富的豆科覆盖作物,可增加土壤中可利用的碳、氮含量,因此由微生物活动造成的CO2和N2O释放就不会因缺少反应底物而受限。种植具有较高C:N比的非固氮覆盖作物燕麦或深根作物黑麦,会因为深根系统更有利于带走土壤中的残留氮,从而减弱覆盖作物对N2O产生的影响。综上,通过合理选择作物品种,实施作物轮作可以起到增加土壤碳固定,减少温室气体排放的目的。
6、土地利用变化措施
土地利用变化与土地管理措施均能影响土壤CO2,CH4和N2O的释放。将农田转变成典型的自然植被,是减少温室气体排放的重要措施之一。这一土地覆盖类型的变化会导致土壤碳固定的增加,如将耕地转变为草地后会由于减少了对土壤的扰动及土壤有机碳的损失,使得土壤碳固定的自然增加。同时由于草地仅需较低的N投入,从而减少了N2O的排放,提高对CH4的氧化。将旱田转变为水田会导致土壤碳的快速累积,由于水田的厌氧条件使得这一转变增加了CH4的释放。由于通过土地利用类型方式的转变来减少农田温室气体的排放是一项重要的措施,但是在实际操作中往往会以牺牲粮食产量为代价。因此,对发展中国家尤其是如中国这样的人口众多的发展中国家而言,只有在充分保障粮食安全等前提条件下这一措施才是可考虑的选择。