能源互联网能够实现远距离、大容量的需求侧响应
能源互联网发展的核心目的是利用互联网技术,促进以
电力系统为核心的大能源网络内各类设备的信息交互,实现能源生产与消耗的实时平衡。海量分布式设备的广域协调和未来即插即用能够实现双向互动的分布式储能,能够提供远距离、大容量的需求侧响应能力。电动车、家庭储能、楼宇储能、天然气发电及电转气技术都将发挥积极作用。
巨量智能家居设备形成的分布式能量调节系统。在能源互联网中,家庭中的冰箱、空调、家庭储能装置所构成的巨量智能家居形成规模庞大的分布式能量调节系统。试想,如果
北京的数百万个家庭的冰箱和空调以主动或被动的方式纳入电力调度体系,其所构成的需求侧响应能力是惊人的。
巨量电动车形成的分布式储能系统。
交通行业是除发电行业之外的另一化石能源消耗大户。2010年,交通
运输行业占最终能源使用的27%。交通行业的最大
减排潜力将是以电动汽车为核心的电气化交通体系。电动汽车可以用作备用电源和移动存储器,在用电较少的时段进行充电,在用电高峰时将电力反哺到电网。当百万辆计的电动车构成的分布式储能系统与电力系统高度一体化时,将不但使电动汽车对电网的影响降到最低,还能形成规模巨大的虚拟电厂,具有很强的需求响应能力。
天然气网络与电网耦合形成强大的调峰能力。天然气在电力系统的比重正在迅速上升。美国2013年宣布新建电厂的
碳排放标准后,新建火力发电厂均为燃气电厂。燃气电厂具有很好的调峰功能,尤其是中小功率燃气轮机机组。最近出现的电转气技术颇引人关注,它可将水电解后产生氢气与氧气,再将氢气与二氧化碳混合产生甲烷。电转气的转化效率可达60%~70%,德国目前已经在进行商业示范。电转气技术将可再生能源机组的多余出力转化为甲烷,可以直接注入天然气网络中进行运输和储存,这使得未来的电力系统与天然气网络之间的能量流动将由单向变为双向。广泛分布于发电端和用户端的小型燃气发电和电转气设施,将形成功能强大的分布式储能体系。
大规模分布式储能装备要想在全球能源互联网中高效运行,最不可少的制度支撑是动态电价和全球电力
市场。足够大的峰谷电价差可以吸引投资者和普通家庭积极进入电力市场。依托发达的互联网技术,消费者能够根据实时电价自动调整用电消费行为和储能设备的运行状态。李克强总理在2015年政府工作报告中提出要制定“互联网+”行动计划。“互联网+能源革命”,可以理解为就是能源互联网。2015年将出台的新电力体制改革方案,应实质性纳入“形成市场决定电价的机制”和“构建电力市场体系”,以落实李克强总理的“互联网+”行动计划,推动中国能源互联网的建设,推动中国乃至世界的能源革命。(本文刊载于《中国电力企业管理》(综合)2015年4期,作者系清华大学能源环境经济研究所博士后)